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Roles of USPI9X in cellular functions and tumorigenesis (Review)
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Abstract. Ubiquitin-specific peptidase 9X (USP9X) is
involved in certain human diseases, including malignancies,
atherosclerosis and certain diseases of the nervous system.
USP9X promotes the deubiquitination and stabilization of
diverse substrates, thereby exerting a versatile range of effects
on pathological and physiological processes. USP9X serves
vital roles in the processes of cell survival, invasion and
migration in various types of cancer. The present review aims
to highlight the current knowledge of USP9X in terms of its
structure and the possible mediatory mechanisms involved
in certain types of cancer, providing a thorough introduc-
tion to its biological functions in carcinogenesis and further
outlining its oncogenic or suppressive properties in a diverse
range of cancer types. Finally, several perspectives regarding
USP9X-targeted pharmacological therapeutics in cancer
development are discussed.
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1. Introduction

The precise control of cell activity in response to systemic
or local signals is largely governed by the regulation of
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homoeostasis (1). Proteins are known to execute a diverse
range of intracellular processes (2). In order to accurately
perform various physiological functions, the intracellular
protein quality must be precisely and strictly controlled, and
this level of control depends on the balance between protein
degradation and synthesis (3). The lysosomal systems and
the ubiquitin-proteasome system (UPS) form an intercon-
nected protein quality control network for lysosomal and
proteasomal protein degradation, respectively (4,5). In the
UPS, ubiquitin is conjugated to targeted proteins, which are
subsequently recognized by the proteasome for degrada-
tion (6,7). Ubiquitinases and deubiquitinases (DUBSs) in the
ubiquitin proteasome pathway are involved in various patho-
logical and physiological processes, such as DNA repair (8),
apoptosis (9) and cancer metabolism (10). DUBs are classified
into seven families on the basis of their sequences and struc-
tural homology, namely ubiquitin-specific proteases (USPs),
ovarian tumor proteases, the JABI/MPN/MOV34 family
of metalloenzymes, ubiquitin carboxy-terminal hydrolases
(UCHgs), the motif interacting with ubiquitin-containing novel
DUB family, Machado-Josephin domain-containing proteases
and the zinc finger-containing ubiquitin peptidase 1. The
structural or functional abnormalities of these enzymes can
lead to numerous diseases, including cancer (11,12). The USP
family accounts for the largest proportion of DUBs that have
been identified, and share a catalytic domain that comprises
300-800 amino acids (13).

Ubiquitin-specific peptidase 9X (USP9X), a member of the
USP family, regulates numerous signaling pathways by deubiq-
uitinating essential proteins, such as myeloid leukemia cell
differentiation 1 (MCL-1) (14,15). USP9X is closely associated
with neurological disorders (16-18), atherosclerosis (19) and
cancers (20). However, to date, USP9X and its precise roles in
different types of cancer have not been widely investigated or
specifically and systematically reviewed. In addition, the value
of USP9X in terms of its clinical and potential application as a
cancer target may be underestimated. Therefore, in the present
review, the current evidence in support of the cellular functions
and underlying regulatory mechanisms of USP9X in tumori-
genesis is summarized, as well as the biological mechanisms
associated with USP9X in different types of cancer.

2. Structure of USP9X

The highly conserved DUB USP9X is located on chromosome
Xpll.4 and was first identified as a human homologue of the
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Drosophila fat facets (faf) gene, subsequently named DFFRX,
which escapes X-chromosome inactivation and serves vital
roles in embryo development (21). The protein sequence of
USP9X and its molecular functions are evolutionarily conserved
across species (22-25). The two recognizable domains of
USP9X are the ubiquitin-like module (UBL) domain (amino
acids 886-970) and the catalytic domain with USP-definitive
cysteine (amino acid 1,566) and histidine (amino acid 1,879)
box catalytic motifs (Fig. 1A) (15). The long non-conserved
N- and C-terminal extensions flank the catalytic domains of
USP9X (26,27). The homology model of USP9X and its func-
tional domains were constructed from the Alphafold Database
(https://alphafold.com/) with PyMOL (The PyMOL Molecular
Graphics System; version 2.3; Schrodinger, LLC; Fig. 1B-D).
The crystal structure of USP9X has been solved and reported
as a conserved and canonical USP-fold consisting of palm,
finger and thumb subdomains, and a (3-hairpin insertion (28).
The catalytic domain of USP9X harbors a zinc finger motif
and three ubiquitin binding sites in the fingers subdomain, and
the B-hairpin insertion, contributing to polyubiquitin chain
processing and cleavage of lysine (Lys)11-, Lys63-, Lys48- and
Lys6-linkages, enabling the protein to perform a variety of
cellular functions (29-34).

USP9X is predominantly present in the cytoplasm (35,36)
and at the cell membrane (37), whereas small amounts of
the protein are internalized into the mitochondria (38), the
nucleus (39) and the centrosome (40). USP9X regulates
apoptosis, mitotic fidelity, inflammation, ribosomal stalling,
proliferation, epithelial-mesenchymal transition (EMT),
oxidative stress, the stemness of cancer cells, chromatin
reprogramming and drug resistance through the precise
recognition, recruitment and binding of diverse substrates for
targeted deubiquitination and stabilization (41-57) (Table I;
Fig. 2). USP9X is also involved in several vital and classical
signaling pathways, including the transforming growth factor-§
(TGF-f), Hippo, Wnt/p-catenin and Janus kinase (JAK)-STAT
signaling pathways (Fig. 3). Moreover, USP9X has been found
to be enriched in the majority of cancer samples, and the
deleterious genetic variants of USP9X are associated with
neurodevelopmental disorders and neurodegeneration (16-18),
indicating its essential and potential function in clinical
treatment.

3. Cellular and biological functions of USP9X

Regulation of both the expression level of USP9X and its func-
tions could lead to diverse and dynamic biological behavioral
changes under a variety of cellular conditions. USP9X has been
identified to have a series of substrates that enable the DUB
to regulate cell apoptosis and survival, mitotic fidelity and
the cell cycle, cell migration and invasion, and DNA damage
repair. USP9X exhibits considerable control over these cellular
functions and also in the development of a number of diseases.

Regulation of cell apoptosis and survival. The execution
of apoptosis is countered by the action of anti-apoptotic
proteins (58). Since certain substrates of USP9X, such as MCL-1
and XIAP, are key factors in cellular apoptosis signaling path-
ways that drive cell apoptosis, targeting these substrates via
USP9X might lead to the regulation of cell apoptosis (41-45).

USP9X displays both pro- and anti-apoptotic functions, medi-
ated by the deubiquitination of critical components of the
apoptotic signaling networks (53,59). Previous studies have
reported that the expression of stress-sensing, pro-apoptotic
kinases is regulated by USP9X to initiate the apoptotic JINK
signaling cascade (59,60). The pro-apoptotic kinase, apoptosis
signal-regulating kinase 1 (ASK-1), is activated under condi-
tions of oxidative stress, leading to the selective activation of
the JNK signaling pathways (59). USP9X also interacts with
ASK-1, protecting it from proteasomal degradation to mediate
oxidative stress-induced cell death (59). USP9X also activates
and stabilizes the dual leucine zipper kinase in response to
extracellular and intracellular stress in neurons, thereby
enabling the activation of pro-apoptotic JNK signaling (60).

By contrast, USP9X enhances the activities of a large
spectrum of anti-apoptotic factors for cell survival. In the
classical mitochondrial apoptosis pathway, the pro-survival
B-cell lymphoma-2 family proteins, including MCL-1,
preserve mitochondrial integrity and indirectly inhibit the
activation of caspase-3 and -7, ultimately limiting the rate of
cell apoptosis (17). USP9X stabilizes MCL-1 through its inter-
action with the protein and the removal of the Lys48-linked
polyubiquitin chains that mark a protein for proteasomal
degradation (53). A recent study reported that the RNA heli-
case Asp-Glu-Ala-Asp-box polypeptide 3 interacted with the
N-terminus of USP9X and participated in deubiquitination
of MCL-1 (61). Therefore, human tumors with a high level of
MCL-1 expression may be accompanied by the overexpression
of USP9X (53,62). Upregulated expression of USP9X promotes
tumorigenicity and cell survival through stabilizing cell death
regulators, including X-linked inhibitor of apoptosis protein
(XIAP), and inhibiting the induction of apoptosis by specifi-
cally stabilizing MCL-1 (53). WP1130 is a small molecule
that directly decreases the DUB activity of USP9X, which
leads to the downregulation of MCL-1, ultimately facilitating
apoptosis (63,64). A previous study reported that apoptosis
was induced by the inhibition of USP9X at least partly through
oxidative stress, which activated DNA damage responses
and stress-associated mitogen-activated protein kinase
(MAPK) signaling pathways (43). Therefore, USP9X, when
co-expressed with multiple apoptosis-associated proteins,
exerts an anti-apoptotic role in cancers, such as oral cancer,
prostate cancer, chronic myeloid leukemia (CML) and acute
myeloid leukemia (AML) (65-67). Overexpression or depletion
of USPI9X is therefore an important factor in cell apoptosis
and survival.

Regulation of mitotic fidelity and the cell cycle. Regulation
of mitosis safeguards cellular integrity and its failure
contributes to the progression, maintenance and drug
resistance of cancer (68-70). In the cell cycle, the mitotic
checkpoint complex (MCC) senses the orientation of sister
chromatids on the mitotic spindle and restricts the activity of
anaphase-promoting complex/cyclosome (APC/C) ubiquitin
ligase to initiate mitotic exit, consequently ensuring that
chromosome segregation and anaphase are able to occur (71).
In this way, the spindle assembly checkpoint is strengthened
and chromosomal stability is made more secure through
restricting APC/C-mediated MCC turnover (71). By contrast,
downregulation of USP9X contributes to a reduction in the
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Figure 1. Structure of USP9X. (A) Schematic diagram of USP9X structure showing the functional UBL and USP domains, and the regions of USP9X known
to facilitate binding to the interacting proteins. (B) The homology model of USP9X as a cartoon representation of the modeled human USP9X structure.
(C) Modeled structure of the UBL domain (amino acids 886-970) and (D) modeled structure of the USP domain (amino acids 1,557-1,956) with the cysteine
(amino acid 1,566) and histidine (amino acid 1,879) motifs represented. Structural data were obtained from the AlphaFold Database (https://alphafold.ebi.
ac.uk/). His, histidine; cys, cysteine; AA, amino acid; MCL-1, myeloid leukemia cell differentiation 1; UBL, ubiquitin-like module; USP, ubiquitin-specific
protease; DCX, doublecortin; DDX3, Asp-Glu-Ala-Asp-box polypeptide 3; SMURFI, specific E3 ubiquitin protein ligase 1; USP9X, ubiquitin-specific

peptidase 9X.

efficacy of the spindle assembly checkpoint, an increase in
chromosome segregation defects and chromosomal insta-
bility, which leads to the subsequent promotion of cancer (71).
Activating the mitotic phosphorylation of USP9X promotes
cell survival through counteracting mitotic ubiquitination
and the ensuing proteasomal degradation of Wilms' tumor
protein 1, the latter of which modulates the transcription and
secretion of CXC motif chemokine ligand 8/interleukin-8 in
mitosis (72). In addition, the dephosphorylation of USP9X
mediated by cell division cycle 14B (CDC14B) has previously
been shown to promote mitotic apoptosis (72). USP9X is an
integral component of the centrosome, where it functions to
stabilize certain centrosome proteins, centrosomal protein 55
and pericentriolar material 1, thereby promoting centrosome
biogenesis (73). Activation of USP9X enhances centrosome
amplification and chromosome instability, whereas inac-
tivation of USP9X leads to an impairment of centrosome

duplication (40). It has been previously reported that USP9X
may stabilize cell cycle-associated proteins to control ribo-
somal stalling (74), regulate centrosome duplication (40),
and antagonize mitotic cell death and chemoresistance (41).
Proteins, such as USP9X, that coordinate the normal func-
tioning of the cell cycle may also trigger inappropriate cell
divisions, thereby taking on dysfunctional roles in certain
pathological disorders, including X-linked intellectual
disability (16,18) and malignancies (40).

Regulation of cell migration and invasion. USP9X also serves
pivotal roles in cell migration and invasion. Doublecortin
(DCX) is a microtubule-associated protein involved in vesicle
transport and microtubule dynamics (75). The C-terminus of
USP9X binds DCX, which acts as a regulator of neuronal cell
migration (76). Loss of USP9X has been shown not only to
reduce axon growth,but also to cause areductioninneuronal cell
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Figure 2. USP9X and hallmarks of cancer. USP9X regulates several fundamental biological processes involved in apoptosis, mitotic fidelity, inflammation,
ribosomal stalling, proliferation, EMT, oxidative stress, the stemness of cancer cells, chromatin reprogramming and drug resistance through the precise
recognition, recruitment and binding of diverse substrates for targeted deubiquitination and stabilization. The pointed arrows represent the effect of promotion;
the flat arrows represent the effect of inhibition. USP9X, ubiquitin-specific peptidase 9X; EMT, epithelial mesenchymal transition.

migration both in vivo and in vitro via USP9X-mediated
disruption of the neuronal cytoskeleton (18). Accordingly,
USP9X is required for normal neuronal cell migration. In
addition, USP9X-mediated deubiquitination of integrin a5bl
serves a role in a5bl-dependent cell migration (77). A previous
study reported that USP9X promoted TGF-f-dependent
cancer progression and metastasis through interaction with
SMAD#4 in the TGF-f signaling pathway, thereby inhibiting
the E3 ubiquitin-protein ligase TIF1y-mediated ubiquitina-
tion of SMAD4 (46). SMAD-specific E3 ubiquitin protein
ligase 1 (SMURF1) was originally identified to block the
TGF/bone morphogenetic protein (BMP) signaling pathway
by specifically degrading SMADI1 and SMADS, as well as
TGF/BMP receptors (78,79). The negative regulation of USP9X

destabilizes SMURF1 and inhibits SMURFI1-dependent cell
migration in breast cancer cells (80). USP9X has also been
shown to activate the prostaglandin E synthase (PTGES)/pros-
taglandin E2 (PGE2) pathway, thereby promoting metastatic
features of non-small cell lung cancer (NSCLC) cells through
the deubiquitination and stabilization of PTGES, which func-
tions as a key enzyme for the process of PGE2 synthesis in the
arachidonic acid pathway (81). It has previously been demon-
strated that USP9X is able to disrupt neuronal cell migration
and growth, which is associated with X-linked intellectual
disability; therefore, USP9X may serve roles in both neurode-
velopment and the modulation of neural apoptosis (18). Taken
together, these findings demonstrate the importance of UPS9X
in regulating cell migration and invasion.
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Figure 3. Summary of the role of USP9X in the TGF-f3, Hippo, Wnt/B-catenin and JAK-STAT signaling pathways.

Regulation of DNA damage repair. USP9X serves impor-
tant roles in DNA damage repair (82). Genomic instability is a
cancer hallmark, often discovered at early stages of the tumor-
igenesis process (83). The repair of DNA double-strand breaks
may trigger the modification of proteins via polyubiquitin or
monoubiquitin around the damage sites (84). During DNA
replication, the ataxia telangiectasia-mutated and Rad3-related
kinase/checkpoint kinase 1 pathway is activated to coordinate
both fork-repair processes and checkpoint responses. In a
previous study, USP9X was found to enhance the maintenance
of DNA damage checkpoint responses and improve DNA
replication fork stability by modulating the checkpoint adaptor
and DNA replication factor claspin during S phase, thereby
preventing DNA damage accumulation or the DNA replica-
tion blockade (85). In addition, USP9X depletion was shown
to block the progression of DNA replication forks, which
increased sensitivity to ionizing radiation, indirectly impairing
genome integrity and leading to excessive endogenous DNA
damage (85). Loss of USP9X also affects the radiosensitivity
of, and cell survival in, glioblastoma through a number
of MCL-independent and -dependent mechanisms (86).
The potential involvement of USP9X during radiotherapy
remains unknown; however, a previous study reported that it
may promote lung cancer radioresistance via epigenetically
inducing TGF-B2 transcription, which serves to increase the
survival of lung cancer cells (26). Therefore, USP9X serves
an important role in the stability of the genome during DNA
replication. The positive regulation of the DNA damage repair

process may also indicate that USP9X is a potential tumor
promoter in cancer, also suggesting its candidacy as a potential
clinical target in tumor therapy.

4. Roles of USP9X in human cancer

USP9X expression in different cells and cancer types. USP9X
expression level has been shown to differ in tissues and cell
lines (Fig. 4A). Furthermore, increased expression levels of
USP9X are found in certain cancer types, including breast and
lung cancer, and glioblastoma (Fig. 4B; Table I), according
to the data from the ProteomicsDB database (87). The
therapeutic potential of USP9X in different types of cancer
has been demonstrated through considering its deubiquitina-
tion capabilities on multiple regulated substrates and critical
signaling pathways (88,89). As for the survival and prognosis
value of USP9X, high expression of USP9X in adrenocor-
tical, and bladder urothelial carcinoma tissues is associated
with lower disease-free survival rates of patients, although
it is associated with higher overall survival (OS) rates in
cholangiocarcinoma (CHOL; Fig. 5), according to the data
from GEPIA (http://gepia.cancer pku.cn/) (90).

USP9X-associated non-coding RNAs in cancer. The available
evidence demonstrates that the USP9X-induced aggressive and
metastatic phenotypes of cancer are regulated by the abnormal
expression of non-coding RNAs (91-97) (Table II). The long
non-coding RNA LINCO01433 has been shown to enhance
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Figure 4. USP9X expression. USP9X expression in (A) healthy tissues and (B) cancer cell lines. Data were obtained from ProteomicsDB (https:/www.
proteomicsdb.org/) (121). The colors from red to green represent the blood and immune, nervous, musculoskeletal, internal, secretory and reproductive system,

respectively. USP9X, ubiquitin-specific peptidase 9X.

the interaction between USP9X and Yes-associated protein
(YAP), thereby stabilizing YAP and leading to the promotion
of tumor progression and chemotherapy resistance in gastric
cancer (GC) cells (91). In addition, the circular RNA hsa_
circ_0008434 is highly expressed in GC and serves the role of
upregulating the expression of USP9X, thereby promoting the
malignant phenotypes of GC cells by serving as a microRNA
(miR) sponge for miR-6838-5p (93). Moreover, downregula-
tion of the cellular FADD-like interleukin-1f3-converting
enzyme-inhibitory protein, which is induced by WP1130, a
type of selective USP9X inhibitor that decreases the activity
of USP9X, was shown to be regulated by miR-708 through the
inhibition of USP9X, which induces the apoptosis of CaSki
cells (98). In addition, miR-132 was previously shown to target
USP9X-induced EMT, which led to inhibition of the migration
and invasive capabilities of NSCLC cells (97).

USP9X and hematological malignancies. USP9X has been
shown to exert opposing effects in hematological malignan-
cies. It has been reported that USP9X can promote tumor cell
survival in human diffuse large B-cell lymphoma, multiple
myeloma and follicular lymphoma through deubiquitinating
MCL-1, which protects it from degradation, resulting in poor

clinical outcomes (38,45,99,100). In addition, a high level of
USPI9X in patients with aggressive B-cell lymphoma has been
shown to be associated with excessive B-cell proliferation,
resulting in an adverse prognosis and resistance to treatment
therapies through the deubiquitination and stabilization of
XIAP, independent of MCL-1 (41). A BCR-ABL-positive diag-
nosis is a typical characteristic of patients with CML. The
WP1130-mediated inhibition of USP9X is associated with a
reduction in MCL-1 levels, followed by blockade of BCR-ABL
kinase signaling, which leads to the rapid onset of CML cell
apoptosis (21). However, USP9X is not involved in BCR-ABL
ubiquitination or cellular localization (101). Moreover, USP9X
silencing was shown to lead to lymphoma growth suppres-
sion, leading to decreased chemotherapy resistance in B-cell
lymphoma (63). Internal tandem duplications of FMS-like
tyrosine kinase 3 (FLT3-ITD) occur frequently in AML, and is
associated with poor outcomes in patients with AML. USP9X
interacts with FLT3-ITD to inhibit its Lys63-linked polyubiq-
uitination (43,102). Furthermore, FLT3-ITD reversely induces
the ubiquitination and tyrosine-phosphorylation of USP9X,
thereby promoting its proteasomal degradation (102). USP9X
also stabilizes RNA m6A demethylase ALKBHS by removing
the K48-linked polyubiquitin chain at K57 and promotes AML
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Figure 5. Association between USP9X expression levels and survival rate of patients with cancer. High USP9X expression levels are associated with decreased
(A) DFS and (B) OS in patients with ACC. High USP9X expression levels are associated with decreased DFS in patients with (C) BLCA, (D) UVM, (E) ESCA
and (F) PCPG. High USP9X expression levels are associated with (G) decreased OS in PCPG and (H) increased OS in patients with CHOL. Dotted lines repre-
sent the 95% confidence interval. Data were obtained from GEPIA (http://gepia.cancer-pku.cn/). USP9X, ubiquitin-specific peptidase 9X; ACC, adrenocortical
carcinoma; BLCA, bladder urothelial carcinoma; UVM, uveal melanoma; ESCA, esophageal carcinoma; PCPG, pheochromocytoma and paraganglioma;
CHOL, cholangiocarcinoma; OS, overall survival; DFS, disease-free survival; HR, hazard ratio.

cell survival (44). Taken together, these findings identify USP9X
as an oncogenic gene that promotes the development of hema-
tological malignancies, and the therapeutic targeting of USP9X
may lead to preferential inhibition of certain types of leukemia.

USP9X also exerts negative effects in hematological
malignancies by acting as a tumor suppressor gene. USP9X
has been identified as a novel leukemia susceptibility gene
associated with B-cell acute lymphoblastic leukemia (B-ALL)
and multiple neurodevelopmental and congenital abnormali-
ties (103). Low USP9X expression is associated with decreased
survival in patients with high-risk B-ALL (103). Genetic

or pharmacological inhibition of USP9X can restrict JAK
signaling to enhance the survival of cytokine receptor-like
factor 2-positive B-ALL in patients with Down syndrome (104),
which suggests that USP9X may exert differential effects in
different types of leukemia.

USP9X and breast cancer. The underlying mechanisms of
USP9X in breast cancer are complex. YAP is an important
oncogene that drives cancer progression, and dysregulation
of the Hippo/YAPI signaling pathway is involved in breast
cancer development (105). YAPI is deubiquitinated and
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stabilized by USP9X, thereby promoting breast cancer cell
survival and resulting in chemotherapy resistance (47).
USPIX stabilizes Snaill, a key factor regulating the EMT
process, contributing to metastasis and chemoresistance in
triple-negative breast cancer (48). Furthermore, downregula-
tion of USP9X renders estrogen receptor a-positive breast
cancer resistant to tamoxifen, leading to a poor outcome for
patients following adjuvant tamoxifen treatment (89). USP9X
can modulate centrosome biogenesis and enhance breast carci-
nogenesis by deubiquitinating and stabilizing the centriolar
satellite protein, CEP131 (40). In a previous study, the arginine
methylation of USP9X was shown to improve its interaction
with Tudor domain-containing protein 3 (TDRD3), which led
to a subsequent enhancement of its anti-apoptotic activities
in breast cancer cells (35). The aforementioned study also
reported that downregulation of TDRD3 improved the sensi-
tivity of chemotherapeutic drug-induced apoptosis in breast
cancer cells, which is likely due to its regulation of USP9X
DUB activity on the anti-apoptotic protein MCL-1 and stress
granule localization (35).

Obesity may be a risk factor for the development of breast
cancer, as it is associated with reduced survival and increases
the risk of distant metastasis for female patients diagnosed
with breast cancer (106). Plasma free fatty acids further
facilitate this biological progression of breast cancer in obese
patients (46). USP9X can also be recruited by the transcrip-
tion factor Nanog to stabilize the hypoxia-inducible factor-1a
protein, which leads to an enhancement of self-renewal in
breast cancer stem cells (49). Moreover, USP9X selectively
promotes activation of the Notch developmental signaling
pathway in triple-negative breast cancer, and small molecule
EOAI3402143 (G9)-mediated USP9X inhibition specifically
inhibits the Notch pathway, which leads to a remodeling of the
tumor immune landscape and suppresses tumor growth (107).
Taken together, these studies suggest that a diverse range of
USP9X-associated mechanisms are involved in breast cancer.

USP9X and lung cancer. Histone lysine demethylase 4C
(KDM4C), a substrate of USP9X, is associated with poor
clinical outcomes in patients with lung cancer (50). A recent
study reported that USP9X activated the TGF-f/SMAD
signaling pathway, thereby inducing radioresistance by
deubiquitinating and stabilizing KDM4C in lung cancer (50).
USP9X is also positively correlated with the dual-specificity
protein kinase known as threonine tyrosine kinase, which
modulates cell proliferation, migration and tumorigenesis
in NSCLC (51). Furthermore, the inhibition of USP9X has
been shown to contribute towards MCL-1-mediated protea-
somal degradation, radiosensitivity and apoptosis in NSCLC
cells (52). Moreover, the chemotherapeutic agent pemetrexed
has been shown to induce apoptosis by increasing the expres-
sion of the pro-apoptotic protein Noxa, thereby activating
the Noxa-USP9X-MCL-1 axis, which demonstrates that
USPO9X serves a critical role in human lung cancer cells (108).
Collectively, these studies have shown that USP9X exerts a
range of different functions in lung cancer.

USP9X and pancreatic cancer. Pancreatic cancer is a lethal
malignancy, and effective targeted therapies are urgently
required to combat its high morbidity rates (2.6%) and mortality

(4.7%) rates worldwide in 2020 (109). To date, USP9X has
been reported to show tumor-suppressing potential in pancre-
atic cancer (110-112). USP9X suppressed tumorigenesis in a
V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog mouse
model of pancreatic ductal adenocarcinoma (PDAC) and its
downregulation enhanced malignant transformation, protecting
PDAC cells from anoikis (110). However, these properties
of USP9X in pancreatic cancer predominantly depend on its
intrinsic deubiquitinase activity. USP9X mediates acute MCL-1
stabilization and protection from apoptosis in response to
MAPK suppression caused by MEK inhibitors (113), which may
provide a promising therapeutic strategy for pancreatic cancer.

USP9X and other types of cancer. The differential expres-
sion or genetic alterations of USP9X have been identified in
multiple types of human cancer, which suggests that it poten-
tially exerts different roles in tumor progression. Higher
expression levels of USP9X are observed in oral squamous
cell carcinoma (OSCC) cells, where it drives oral tumorigen-
esis by deubiquitinating and stabilizing the anti-apoptotic
protein MCL-1, which was shown to correlate with poor
outcomes in patients with OSCC (53). In addition, aldehyde
dehydrogenase 1 family member A3 (ALDHI1A3) functions
as a key enzyme for maintaining the self-renewal and mesen-
chymal (MES) features of glioblastoma stem cells (54).
Depletion of USP9X leads to a marked downregulation of
ALDHI1A3, which leads to a loss of the tumorigenic and
self-renewal capabilities of MES glioblastoma stem cells.
By contrast, a high expression level of USP9X is indica-
tive of potent tumorigenic capability in MES glioblastoma
stem cells with enrichment of ALDH1A3 (114). A previous
study reported that USP9X-mediated deubiquitination and
stabilization of Ets-1 promoted the expression of the N-RAS
oncogene and carcinogenesis in melanoma (56).

Although USP9X has been reported to exert oncogenic
functions in several different types of cancer, a number of
previous studies have also reported the tumor-suppressive
properties of USP9X in carcinogenesis. In the murine
intestine, USP9X is necessary for tissue homeostasis and
regeneration following acute colitis (55); it regulates the func-
tion and protein expression levels of the tumor suppressor
FBW7, which consequently protects it from proteasomal
degradation (55). Therefore, the restricted level of c-Myc
that is regulated by USP9X via stabilization of FBW7
reduces the risk of colitis-mediated colorectal cancer (CRC)
in mice, whereas the silencing of USP9X is associated with
a poor prognosis in human CRC (55). USP9X expression is
downregulated in CRC and CHOL (89). Moreover, USP9X is
involved in the activation of apoptosis in CHOL, which also
suppresses tumor cell proliferation (57). USP9X exerts its
tumor-suppressive functions through deubiquitinating Egl-9
family hypoxia inducible factor 3, thereby activating the
apoptosis signaling pathway components, kinesin KIF1Bf3 and
cleaved caspase-3 (57). USP9X also targets and regulates the
stability of angiomotin to indirectly inhibit YAP/transcrip-
tional coactivator with PDZ-binding motif activity, and a low
level of USP9X is correlated with poor clinical outcome in
renal clear cell carcinoma (115). Taken together, these findings
suggest that there may be potential for USP9X to be used as a
therapeutic target for the treatment of certain types of cancer.
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5. USPYX protein as a therapeutic target

Small molecule inhibitors that target DUBs are emerging as a
novel form of anticancer therapeutic strategy (82). A previous
study reported that USP9X overexpression inhibited apoptosis
and promoted tumor cell survival (41,57). Moreover, previous
studies have identified USP9X as an oncogene in various types
of cancer (47,53), suggesting that it may be a future potential
target for therapeutic development. However, no small molecule
inhibitors specific to USP9X are currently available for use in a
clinical setting. WP1130, previously known as Degrasyn (116),
is the best-characterized USP9X inhibitor capable of inhibiting
USPOX activity, in addition to the activity of several other
DUBs (USP5, USP14, USP24, UCH37 and UCH-L1) (117),
thereby highlighting its role as a type of partially selective
DUB inhibitor. The proliferation, inhibition and anti-apoptotic
effects of WP1130 against diverse tumors have been reported
in B-cell malignancies (118), AML (43), NSCLC (51) and
glioblastoma (114), mainly through the inhibition of USP9X
with the subsequent accumulation of polyubiquitinated proteins
and downregulation of antiapoptotic proteins, including MCL-1
and p53. WP1130 has also been shown to increase tumor cell
sensitivity to chemotherapy (43). BIX-01294 is an inhibitor
developed to inhibit the activity of euchromatic histone-lysine
N-methyltransferase 2 and has been shown to promote USP9X
downregulation by stimulating both endoplasmic reticulum stress
and the expression of phorbol-12-myristate-13-acetate-induced
protein 1, resulting in a downregulation of the level of MCL-1,
which promotes apoptosis in bladder cancer cells (119).
Peterson et al (118) reported on a small molecule inhibitor of
USP9X/USP24, EOAI3402143(G9), which inhibited the DUB
activity of USP9X and USP24 in a dose-dependent manner,
increased apoptosis in myeloma and fully regressed or blocked
myeloma tumors in mice. G9 was shown to induce apoptosis
in lymphoma and myeloma cell lines in vitro, inhibiting tumor
progression with little overt toxicity (120). BRD0476 selectively
inhibits USP9X activity to suppress the JAK-STAT pathway,
which protects human pancreatic [3-cells and cancer cells from
cytokine-induced apoptosis (121). It was also demonstrated that
the disruption of USP9X by the CRISPR/Cas9 system and small
interfering RNA intervention brought about similar protective
effects resulting from BRD0476 treatment, which suggests
that BRD0476 may function as a modulator of USP9X (121).
Isothiocyanates, such as phenethyl isothiocyanate and benzyl
isothiocyanate, have also been shown to exert anticancer
activity by inhibiting USP9X and other DUBs in physiologi-
cally relevant time scales and concentrations, particularly in
hematological malignancies (122). Taken together, these study
results highlight the potential of pharmacological inhibitors
targeting USP9X, which may be an effective therapeutic target
courtesy of its DUB activity. Although inhibitors of USP9X
are not at present available for clinical use, novel therapeutic
approaches targeting USP9X in human cancers may be
developed further in the future.

6. Conclusions and perspectives
USP9X interacts with an extensive range of substrates and

has the potential to regulate multiple signaling and survival
pathways with cellular responses. USP9X controls a wide

variety of cellular pathological and physiological processes
through its DUB activity. Previous studies have reported on
the significance of USP9X in the cell cycle, apoptosis and
survival, and its crucial functions in cell migration and inva-
sion, and DNA damage repair are mediated predominantly via
deubiquitination-mediated regulation of the turnover of certain
substrates. However, the roles of USP9X in tumor development
are complex, and contradictory functions have been identified
in different developmental contexts, wherein USP9X displays
both oncogenic activity and tumor suppressor functions. In
addition to the substrates and downstream signaling pathways
regulated by USP9X in tumor progression, the upstream
regulatory factors involved in modulating USP9X protein
activation in carcinogenesis also merit further exploration. In
the future, the development of specific novel inhibitors against
USP9X may be a successful strategy for tumor therapy.
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